

Documentation for the implemented Noise Robust Multi-Label Classifier

This is the technical documentation of our project with RSIM of TU BERLIN [https://www.rsim.berlin/].

	Setup
	Data Set (Deep Globe Patches)

	Word Embeddings

	Run Example

	Technical Documentation
	Main

	LAMP

	Evaluation

 This is the technical documentation of our project with RSIM of TU BERLIN [https://rsim.berlin/].

Setup

First install the conda environment at cluster_instructions/conda_env.yml and activate it.

Data Set (Deep Globe Patches)

Then download the Deepglobe dataset from KAGGLE [https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset].
Place it in the project with the path data/deepglobe. Then run the patch-sampling pipeline: data_pipeline/deepglobe/patch_sampling.py. This creates LMDB files for the train, test and valid set at data/deepglobe_patches/[train/test/valid]/.

Word Embeddings

The folder data/glove contains the embeddings for the deepglobe-labels for embeddings spaces of 50 and 300. If other embeddings are necessary, or a different dataset is used. These can be created by modifying the src/wordembedding/glove.py and running it. To use this downlaod the glove txt files from Stanford [https://nlp.stanford.edu/projects/glove/]. Currently d = [50,100,200,300] are available there. For different embedding size, retrain the glove model.

Run Example

The most important parameters are contained in this exemplary run.
For all parameters check out src/config_args.py, for our parameterized runs check out cluster_instructions/<model>_<loss>.sh

python main.py -model CbMLC -loss weighted_bce -optim sgd -d_model 50-lr 0.0001 -add_noise 0.1 -sub_noise 0.1

Technical Documentation

For the documentation of specific methods consider the docstrings and inline comments of these methods.

Main

The main method is structured as follows:

	Argument Parsing

	Data Loading

	Model Preparation and loading

	Optimizer and Loss Setup

	CUDA Setup

	Training or Predict

LAMP

The Model can be found in the src/lamp/Models.py

Note

In the LAMP directory we only contributed the RESNETs in the Decoders.py and Models.py

Evaluation

To reconstruct our evaluation process, use the plots/plot_training.ipynb file. The averaged results are attached in the results directory as CSV files.

Index

 nav.xhtml

 Table of Contents

 		
 Documentation for the implemented Noise Robust Multi-Label Classifier

 		
 Setup

 		
 Data Set (Deep Globe Patches)

 		
 Word Embeddings

 		
 Run Example

 		
 Technical Documentation

 		
 Main

 		
 LAMP

 		
 Evaluation

_static/RS.png

_static/plus.png

_static/file.png

_static/minus.png

